Analytic Functions Smooth up to the Boundary

Analytic Functions Smooth up to the Boundary
Author(s): Nikolai A. Shirokov , Sergei V. Khrushchev
Collection: Lecture Notes in Mathematics 1312
Publisher: Springer-Verlag Berlin Heidelberg
Year: 1988
Language: English
Pages: 222 pages
Size: 1.62 MB
Extension: DJVU


[tab] [content title="Description"]This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sense, up to the boundary. The peculiar properties of such a factorization are investigated for the most common classes of Lipschitz-like analytic functions. The book sets out to create a satisfactory factorization theory as exists for Hardy classes. The reader will find, among other things, the theorem on smoothness for the outer part of a function, the generalization of the theorem of V.P. Havin and F.A. Shamoyan also known in the mathematical lore as the unpublished Carleson-Jacobs theorem, the complete description of the zero-set of analytic functions continuous up to the boundary, generalizing the classical Carleson-Beurling theorem, and the structure of closed ideals in the new wide range of Banach algebras of analytic functions. The first three chapters assume the reader has taken a standard course on one complex variable; the fourth chapter requires supplementary papers cited there. The monograph addresses both final year students and doctoral students beginning to work in this area, and researchers who will find here new results, proofs and methods. [/content] [content title="Content"] [/content] [content title="About the author"]Nikolai A. Shirokov is a Mathematician [/content] [/tab]

Download (djvu, 1.62 MB)



[facebook src="bibliosciencesorg"/]


Key-Words: Télécharger Analytic Functions Smooth up to the Boundary EBOOK PDF EPUB DJVU. Download Analytic Functions Smooth up to the Boundary EBOOK PDF EPUB DJVU.

0 Commentaires:

Enregistrer un commentaire

Veuillez laisser en commentaires vos demandes de livres !

Comments

Notre site n'héberge aucun fichier. La loi française vous autorise à télécharger un fichier seulement si vous en possédez l'original. Ni notre site, ni nos hébergeurs, ni personne ne pourront être tenu responsables d'une mauvaise utilisation de ce site.